Résumé 4:

Etude des fonctions

Deuxième bac science Mathématique

Frof Fayssal https://elboutkhili.jimdofree.com/

Si $\lim_{x\to a} f(x) = \infty$

Convexité de (Cf) et les Points d'inflexions

Si $f'' \ge 0$ sur I alors (Cf) est convexe sur I \cup Si $f'' \le 0$ sur I alors (Cf) est concave sur I \cap

Si f'' s'annule et change le signe en a alors le point $A(x_0; f(x_0))$ est point d'inflexion de (Cf)

(Cf) travers la tangente en $A(x_0; f(x_0))$

Position relative de(Cf) et une droite (Δ)

la position relative de (Cf) et (Δ): y = ax + bdépond de signe de f(x) - (ax + b)

X	x_0
f(x)-(ax+b)	, 0 , +
Position relative de (Cf) et (Δ)	$ \begin{array}{c c} (Cf)est\ au & point \\ \hline \textit{dessous} & \textit{d'inter} \\ \textit{de}\ (\Delta) & \textit{A}(x_0;f(x_0)) & \textit{de}\ (\Delta) \\ \end{array} $

Points d'intersections de (Cf) avec (Ox) et T.V.I

les points d'intersection de (Cf) avec l'axe des abscisses (Ox) sont les points dont les abscisses sont les solution de l'équation f(x) = 0

* Théorème

Si f est continue et strictement monotone sur un intervalle I et $0 \in f(I)$ Alors l'équation

f(x) = 0 admet une unique solution α dans I Interprétation géométrique : (Cf) coupe l'axe des abscisses (Ox) au point $A(\alpha; 0)$ et $\alpha \in I$

 (Cf^{-1}) la courbe de la fonction réciproque f^{-1}

ightharpoonup Les courbes (Cf) et (Cf⁻¹) sont symétriques par rapport à la droite ; (Δ): y = x

Eléments de symétrie

Le point I(a;b) est centre la droite d'équation de symétrie de (Cf) ssi (D): x = a est un axe $(\forall x \in \mathbf{D}_f)$:

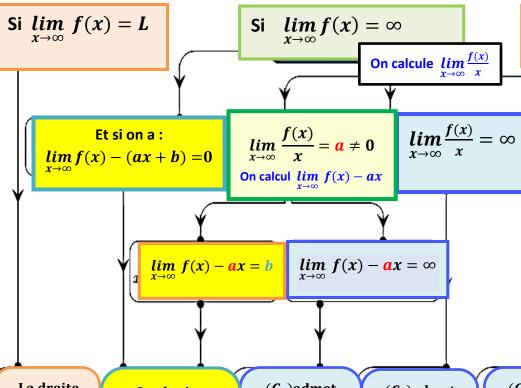
$$(2a-x)\in D_f$$

 $et \ f(2a-x)+f(x)=2b$

de symétrie de (Cf) ssi $(\forall x \in D_f)$:

$$(2a-x)\in D_f$$

$$et \ f(2a-x)=f(x)$$



La droite (D): y = Lest asymptote horizontal $e \grave{a} (C_f)$ voisinage de ∞

La droite (Δ) : $\mathbf{v} = \mathbf{a}\mathbf{x} + \mathbf{b}$ est asymptote oblique à (C_f) voisinage de ∞

 (C_f) admet branche.P de direction la droite d'équation (Δ) : $\mathbf{v} = \mathbf{a}\mathbf{x}$ Au voisinage de ∞

 (C_f) admet branche parabolique de Direction $(\mathbf{0}_{\mathbf{v}})$ Au voisinage de ∞

 (C_f) admet une branche parabolique de Direction la droite $(\mathbf{0}_r)$ Au voisinage de ∞

(D) d'équation x = a est asymptote verticale à (C_f)

La droite

